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J. Phys. A: Math. Gen. 19 (1986) 1259-1270. Printed in Great Britain 

Dynamical O(4) symmetry in the asymptotic field of the 
Prasad-Sommefield monopole 

L Gy FehCr 
Bolyai Institute, H-6720 Szeged, Hungary 

Received 28 May 1985, in final form 28 August 1985 

Abstract. The exact solution is presented for the classical and quantum mechanical problem 
of a spinless, isospin-carrying test particle interacting with a singular monopole of the 
same large-distance asymptotic behaviour as the Prasad-Sommerfield 1-monopole. It is 
demonstrated that this problem has a dynamical O(4) symmetry. The classical mechanical 
equation of motion is traced back to a non-relativistic Coulomb problem. The long-range 
Higgs field results in monopole-test-particle bound states. The bound state spectrum is 
derived on a purely group theoretic basis using dynamical symmetry. 

1. Introduction 

The non-relativistic Coulomb problem (e.g. Bander and Itzykson 1966), the interaction 
of two dually charged particles (Zwanziger 1968), the interaction of an electric point 
charge with the Dirac monopole (Jackiw 1980, Bacry 1981, Barut 1981, Golo 1982, 
HorvPthy 1983) all have certain dynamical symmetries. It was noticed by several 
authors (Jackiw 1980, Golo 1982, Barut and Bracken 1983) that the Wu-Yang (1968) 
monopole and/or the 't Hooft-Polyakov monopole ('t Hooft 1974, Polyakov 1974) 
could also have a dynamical invariance. 

The following one-parameter family of solutions (Protogenov 1977) in the standard 
SU(2) Yang-Mills-Higgs model in the Prasad-Sommerfield limit: 

XQ 
A," = 0, = ; g H ( r ) ,  ( a  = 1,2931, 

H ( r ) =  rcoth(r+r,)-1,  
r 

sinh( r + ro) 
K ( r )  = 

reduces to the Prasad and Sommerfield (1975) 1-monopole for ro = 0, and for other 
values of the parameter ro it describes a singular monopole of the same large-distance 
asymptotic behaviour. 

In this paper we present the exact solution for the classical and quantum mechanical 
problem of a spinless, isospin-carrying test particle in the background field (1.1) with 
r 0 = a  We demonstrate that this problem has a dynamical O(4) symmetry quite 
analogous to that of the non-relativistic Coulomb problem. As a trivial example of 
the dimensional reduction procedure (Forgics and Manton 1980, Harnad et a1 1980a) 
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the adjoint Higgs field 4" can be regarded as the extra spacelike component Ai of a 
Yang-Mills potential A: ( p  = 0, . . , , 4 )  over a five-dimensional flat spacetime. Our 
method is to investigate the mechanics in the five-dimensional pure gauge field corre- 
sponding to (1.1) (FehCr 1984; see Shnider and Stemberg 1983 also). 

In Q 2 we present the test particle's classical mechanics in a form adapted to the 
developments in 00 3 and 4. 

The third part of the paper is devoted to an analysis of the classical motion in the 
presence of the ' r ,  = CO monopole' and its symmetry algebra. The spatial motion takes 
place on the surface of a rotation cone whose axis is the total angular momentum 
vector. We shall apply the 'trick' of Boulware er a1 (1976), i.e. to bend down the cone 
in question to the plane perpendicular to its axis. The clue to the exact solution is 
that this transformation leads to an effective, non-relativistic Coulomb problem having 
a well known O(4) symmetry. 

In the fourth part we show how the dynamical symmetry does work in the quantum 
mechanical version of the problem. There exists a rich bound state spectrum which 
follows from the dynamical O(4) symmetry. From a physical point of view the bound 
states are produced by the attractive Higgs field coupling. The Higgs field is of zero 
mass in the Prasad-Sommerfield limit and therefore cannot be neglected as was done 
in Schechter (1976) and Marciano and Muzinich (1983). 

Din and Roy (1983) solved the Dirac equation for an isospinor fermion in the 
ro = LT) monopole's field. Most likely the five-dimensional version of this problem is 
also completely soluble using group theoretic arguments only. The presence of the 
dynamical symmetry was conjectured in FehCr (1985) from an explicit solution of the 
Klein-Gordon equation. 

2. Preliminaries on classical mechanics 

Our aim is to investigate the mechanics of a pointlike, spinless, isospin-carrying test 
particle in the background field (1.1) with r , = m .  Throughout the paper we work in 
the rest frame of the monopole and 'before' the pure Yang-Mills + Yang-Mills-Higgs 
dimensional reduction. 

Let M denote the five-dimensional flat spacetime without the worldline of the 
monopole. In Cartesian coordinates x p  ( p  = 0, .  . . , 4 )  the metric tensor is given by 
g,, = diag( -1, 1, 1, 1, 1) and g j k X ' X k  = rz  # 0, (latin indices j ,  k, . . . run as 1, 2, 3). 

In 3, the Lie algebra of SU(2), we choose a basis T, (a = 1,2,3) satisfying [ T,, 
Tb] = E,bcTC. We identify $9 and its dual space $9* with the aid of the adjoint invariant 
metric (,)% on defined in the fixed basis by (T,, Tb)% = 8,b. Let 6" ( a  = 1,2,3)  denote 
the coordinates in $9 with respect to the basis T,. Lie algebra indices can be raised 
and lowered by 8,b. 

An SU(2) Yang-Mills field over M appears as a connection w on a principal fibre 
bundle P(M,  SU(2), T )  (Kobayashi and Nomizu 1963, Bleecker 1981). In our case P 
is equivalent to the product bundle M x SU(2). From now on we fix a global section 
U of P and work in the corresponding trivialisation. A connection w on P is defined 
by its pull-back u * w  = A: dxp 0 T,. Let A$ be given by (1.1) with r, = CCI and applying 
the substitution I#J, + A i  there. 

The classical mechanics of an isospin-carrying test particle in a Yang-Mills field 
can be treated in several ways (Kemer 1968, Wong 1970, Stemberg 1977, Balachandran 
er a1 1977, Weinstein 1978, Sniatycki 1979, Duval and Horviithy 1982). Now we present 
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it for our special case in a form (Montgomery 1984) particularly convenient for the 
objectives of 90 3 and 4. 

Let P" be the pull-back of P to T*M, i.e. P" = P x  T*M(diag(MxM). The phase 
space for our particle is the coadjoint bundle E #  = P# x su(2) %*. The section U defines 
trivialisations of P" and E #  through the trivialisation of P. The coordinates x r  induce 
canonical coordinates ( x r ,  p , )  in T*M. Taking these into account and using the fixed 
basis T, of % -- %* we introduce coordinates ( x p ,  py,  6")  in E #  = T* M x '3*. Let us 
define the Poisson brackets of these coordinate functions as 

{XF, X U }  = 0, 

{ [ a ,  pp} = E a b A L t C ,  

{ x p ,  6")  = 0, {e", t b }  = - E  abc6n 
(2 .1)  

{ P,, ~ v >  = - F E v t a ,  { P p ,  XU) = 8:. 
Here 

F:" a,A: -t E a b c A L A t  ( 2 . 2 )  

is the field strength tensor. For arbitrary f, h E C " ( E # )  we take 

(2.3) 

where zoL,  z p  run through the coordinates ( x r ,  p,, 6 " )  independently. In this way we 
have obtained a Poisson bracket operating in C"(E#)  x C"(E"). All the usual 
identities hold for the bracket { ,}. However from {f, h }  = 0 Vh E C " ( E # )  it does 
not follow now that f is a constant. In fact, the particle's total isospin 

w = S , , ( " t b  ( 2 . 4 )  

is a Casimir function of the Poisson manifold (Weinstein 1983) ( E ' ,  { ,}), i.e. W has 
a vanishing bracket with any observable. 

The Hamiltonian equations with the kinetic Hamiltonian 

(2 .5)  x = -1 r" 2g P r P v  

give the Wong equations (Wong 1970) governing the motion of the test particle: 

dtahlds = { e a ,  = - E a d ; P ' L S C ,  ( 2 . 6 ~ )  

dx'"1d.s = {x',X} = p r ,  ( 2 . 6 6 )  

( 2 . 6 ~ )  

In the first part of § 3 we shall describe conserved observables that are due to the 
symmetries of the monopole. Let us sketch the main ideas behind their derivation. 
For this we need the notion of the automorphism group Aut P of a principal fibre 
bundle P ( M ,  G, n) :  Aut P consists of elements F from Diff P commuting with the 
right translation R, E Diff P for any g from the structure group G. There exists a 
natural homomorphism 7): Aut P + Diff M for which 7~ 0 F = v( F )  0 n is valid. Aut P 
acts on M by this homomorphism and therefore on T* M as well. Furthermore, we 
regard Aut P acting on P# and on E" by means of its actions on P and on T* M too. 

If F E Aut P preserves the connection U ,  i.e. 

F*w = w ( 2 . 7 )  
holds, then its action on E" preserves the Poisson bracket (locally it can be described 
in the general case as in (2.1)) because the definition of { , }  depends just on the 
connection. If in addition, 7 ( F )  E Diff M is an isometry of the spacetime metric then 
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the kinetic Hamiltonian 3Z and so the Wong equations also remain invariant with 
respect to the transformation F. Let the subgroup of Aut P consisting of elements 
having the above two properties be denoted by K,. K ,  is the usual invariance or 
symmetry group of the Yang-Mills field represented by w (Forgics and Manton 1980, 
Harnad et al 1980b). 

It is natural to call a vector field Y on P an infinitesimal symmetry (with respect 
to w and the spacetime metric) if its flow F, E Diff P is in K,  for sufficiently small t. 
From the above line of reasoning it is clear that an infinitesimal symmetry always 
provides us with a conserved quantity for the Wong equations (for details see Duval 
and HorvPthy 1982). This fact will be of frequent use in the following. 

3. The motion of the test particle and its symmetry algebra 

Let us introduce an SU(2)-equivariant function (p : P -+ 3 by 

ci;(x, g )  = Ad,-,[cp(x)l, 

q a ( x )  = x a / r ,  

( P  = M x SU(2)), 
(3.1) 

C P ( X )  = q a ( x ) T a .  
With the ro = CC monopole we have (Dq): = aqa/ax* + ~ ~ ~ & q ~  = 0. From this 
and (2.6a)-(2.6b) it follows that 

I 
r Q = pa( a = - xa5a (3.2) 

is a conserved quantity. Choosing an arbitrary yo E P + defines a U( 1) sub-bundle Po 
of P by the equation 

Po = {YIY E P,@(Y)  = ci;(Yo)l. (3.3) 
The connection w describing the monopole reduces to a connection wo on Po because 
of Dq = 0 (Kobayashi and Nomizu 1963). As a matter of fact Po is the holonomy 
bundle of w with base point yo. So the ro = 00 monopole is an embedded U( l ) ,  'purely 
electromagnetic' solution in the five-dimensional SU(2) Yang-Mills model. The field 
strength tensor of wo is given by 

s g v  = F i v q a  (3.4) 
independently on yo. The motion of the test particle is determined by the five- 
dimensional Lorentz force law 

dx*'/ds = pw, dp,lds = Qswu~" (3.5) 
as it is easy to see from (2.6) and (1.1) with ro = CO. This makes it plausible to identify 
the observable Q E C"( E " )  with the electric charge of the test particle. As a byproduct 
we now interpret the above as a nontrivial example of an interesting general result. 

For any principal fibre bundle P ( M ,  G, T) there is a one-to-one correspondence 
between the G-equivariant functions from P to Ce and the adjoint Higgs fields, i.e. 
global sections of the adjoint bundle E = P x ,  Ce. If a connection w is given on P 
then this correspondence and the equation 

6 = 4 Y ) ,  7r*(Y) = 0 (3.6) 
lead to a one-to-one map from the covariantly constant Higgs field to the so-called 
infinitesimal internal symmetries (with respect to w ) .  An infinitesimal symmetry Y 
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with T*( Y )  = 0 is called 'internal' since its flow gives the identity transformation on 
the spacetime M. The Lie algebra of the infinitesimal internal symmetries of a connection 
w is isomorphic to the centraliser of the holonomy algebra of w in % (Fischer 1982, 
Bleecker 1984, Horvhthy and Rawnsley 1984). If a test particle is coupled to the 
Yang-Mills field w then a conserved gauge invariant charge QY E C"( E # )  belongs 
to any infinitesimal internal symmetry Y. QY is described by a formula analogous to 
(3.2) and so it is a gauge invariant component of the particle's %-valued charge 
conserved only covariantly (see (2.6a)-(2.6b)). From the quoted result one gets that 
the subalgebra in ( C " ( E # ) ,  { , }) which is formed by the conserved gauge invariant 
charges of the test particle is isomorphic to the centraliser of the holonomy algebra 
of w in 94 (Horvhthy and Rawnsley 1984). For the ro = CO monopole the holonomy 
algebra is one-dimensional and equal to its own centraliser. So Q in (3.2) is the only 
gauge invariant conserved charge of our test particle. 

Turning back to our problem let M be the complete five-dimensional spacetime. 
First of all we are interested in the spatial motion of the test particle. The physical 
3-space can be regarded as the plane xo = 0, x4 = 0 in G. In 3-vector notation (3.5) 
is 

dP0 d ~ 4  - d Q - = o ,  ---- 
ds ds  ds r'  

2 = g [ r  x p + p4r]. 
ds r3  

(3.7) 

From the infinitesimal symmetry generated by the one-parameter family of sym- 
metries of the monopole 

F:{[(xo, r, x4), 811 = [(XO, r, x4 + t ) ,  81 (3.8) 

one obtains the following constant of motion 

= p4 + Q(1 - 1/r) ,  (Z E C " ( E # ) ) .  

From (3.7) and (3.9) the spatial motion is governed by 

ds  

(3.9) 

(3.10) 

From the viewpoint of dimensional reduction (3.10) means that the Higgs field influen- 
ces the test particle by means of long-range l / r  and l / r 2  potentials. 

The mass m of our particle 

m2 = (Po)' - g-l"P,Pk (3.11) 

varies as a consequence of the Higgs field coupling. The positivity of m2 is ensured 
by regarding only timelike worldlines in G. We have the usual equality 

2 - 1 / 2  

Po = m [  1 - ($) ] (3.12) 

and p o  is conserved because of the static and purely magnetic (F,", = 0) character of 
the background field. 
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In the fixed trivialisation of P we can define the ‘diagonal left action’ of SU(2) on 
p by 

Fg{[(X0, r, x 4 ) ,  go11 

= [ ( X O ,  77(g)r, x 4 ) ,  ggol,  (V(xo,  r, x4) E M, g ,  go E SU(2)). (3.13) 

Here 77 : SU(2) + SO(3) is the covering homomorphism and T ( g )  acts on the 3-space 
in the usual way. The well known rotational symmetry of the monopole’s field appears 
geometrically as its invariance with respect to Fg E Aut P for Vg E SU(2). This 
symmetry leads to the conservation of the total angular momentum (Jackiw and Rebbi 
1976, Hasenfratz and ’t Hooft 1976) 

(3.14) 

The infinitesimal symmetries resulting in the conservation of Q, Z, po, J k  (for any 

(3.15~1) 

Jk = & k i n X b n  -I- ( Q / r ) X k .  

fixed k) commute with each other. Hence we have the Poisson brackets 

{Q,  ZI = {Q,  PO) = {Q,  J k }  = { Z ,  POI = { Z ,  J k )  = {PO, J k )  = 0, 

and naturally 

{ Q ,  XI = { Z ,  = {PO, XI = i J k 3  = 0, (3.156) 

{ J k r  J />  = -&klnJn* ( 3 . 1 5 ~ )  

Here X is the Hamiltonian (2.5). It is a simple matter to check (3.15) with the aid of 
the previous formulae (3.2), (3.9), (3.14) and the basic Poisson brackets (2.1). 

The spatial trajectory of the particle lies on a rotation cone whose axis is J on 
account of 

( X k / r ) J k  = Q. (3.16) 

Excluding the trivial case of J 2  = Q2 let us introduce the vector R by 

R = (1 - Q 2 / J 2 ) - ” * [ r  - ( Q r / J 2 ) J ]  (3.17) 

as a new variable instead of r (for fixed J, Q and Z ) .  Geometrically, the transformation 
(3.17) means that one bends down the half-cone determined by (3.16) to the plane 
perpendicular to its axis J. Using this transformation Boulware et al (1976) obtained 
an effective inverse square potential problem for the Dirac monopole. The O(2, 1) 
‘dynamical’ symmetry of the Dirac monopole (Jackiw 1980) is related to an analogous 
symmetry of the 1 /R2 potential (de Alfaro et a1 1976). We note that the Wu-Yang 
(1968) monopole is an embedded Abelian one and so it inherits the symmetries of the 
Dirac monopole. In our case (3.10) and (3.17) give rise to a non-relativistic Coulomb 
problem 

(3.18) 

An explicit solution of (3.10) is found easilyusing (3.18). The orbital angular momentum 
and the conserved energy of the central force problem (3.18) give back J and the 
conserved energy of (3.10), respectively. The energy can be written in the original 
variables as 

S = f [ g ‘ k P j p k  (P4)* - ( Z  - 91’3. (3.19) 
According to the well known dynamical symmetry of the Coulomb problem (see, e.g., 
Bander and Itzykson 1966) the Runge-Lenz vector 

(3.20) 

d2R/ds2 = Q ( Z  - Q ) R / R 3 .  

C = dR/ds  X J + Q ( Z  - Q ) R / R  
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is an extra conserved quantity for (3 .18) .  It will be convenient to use 

(3 .21)  

instead of C. In the original variables D is given by the expression 
(3 .22)  

D is well defined by (3 .22)  even if J 2  = Q2. The reader can readily verify that the 
relations 

{Dk, x) = I D k ,  Q }  = {Dk, 2) = I D k ,  P O }  = { D k r  (3.23 a )  
{ J k ,  O f )=  - &kinDn, ( 3 . 2 3 b )  

{Dk, Dl1 = &klnJn(2S), ( 3 . 2 3 ~ )  

{s, ( 3 . 2 3 d )  

are valid. Equations ( 3 . 2 3 b ) - ( 3 . 2 3 ~ )  give us a symmetry algebra which is quite 
analogous to that of the non-relativistic Coulomb problem (surprisingly enough since 
our problem is a relativistic one). 

Dk = &klnp‘Jn -I- Q ( z  - Q)Xk/r .  

= 0, 

= {s, 0) = {s, z}  = {s, PO} = {s, J k }  = 0 

In a domain of E #  where S # 0 let us introduce the quantities 
Hk = (12sl)-”2&, ( k  = 1 , 2 , 3 )  (3 .24)  

instead of Dk. Our main result in this part is that the Poisson brackets 

{Jk, J l }  = - & k l n J n ,  

{Jk, HI} = -&klnHn, (3 .25)  

{Hk, HI) = (sgn S)&klnJn 
represent a dynamical O ( 4 )  or O ( 3 , l )  algebra depending on the sign of the ‘effective 
binding energy’ S. 

4. The bound state spectrum 

In this part of the paper we would like to study the quantum mechanical version of 
our problem. We shall obtain a bound state spectrum with a high degree of degeneracy 
as a consequence of the large symmetry algebra described previously. In the derivation 
of the bound state spectrum we shall follow a train of thought analogous to that 
used by several authors in the case of the non-relativistic Coulomb problem (see, e.g., 
Bander and Itzykson 1966). 

In an arbitrary quantisation scheme one represents some subset of C“( E # )  among 
the Hermitian operators of a Hilbert space. According to very basic principles of the 
quantum mechanics the next relation must hold 

On the left-hand side of ( 4 . 1 )  [ j  f i ]  is the commutator of the Hermitian operators j 
h* which represent the observables f, h E C ” ( E # ) .  From now on we assume that we 
are given a representation of the basic Poisso? brackets (2 .1)  (at least those brackets 
not containing xo or p o )  by operators g”, a”,,, $“,which act in a Vilbert space denoted 
by X. Let us ‘define’ the operators Q, 2, Jk ( k  = 1 , 2 , 3 ) ,  S with the aid of the 
expressions (2.41, (3.21, ( 3 . 9 ) ,  (3 .14)  and (3.191, respectively. We simply substitute the 
corresponding operators for x”, p y ,  5“ in the c-number formulae. 

Lj;h*] = -ifi{f>}. ( 4 . 1 )  
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Furthermore, let us introduce the operator 6 k  (k = 1,2,3)  with the help of the 
formal expression 

(4.2) 
- 6 k - - E kln ( * I %  p J  - j y n )  + o(2 - b ) ( x k / r ) .  

It is easy to see that the operators introduced in this manner are (at least formally) 
Hermitian ones. 

Later on the following equations will be of great importance 

j k 6 k  = Bkjk = @(i - 6), (4.3a) 

6' = 29@ - 6' + h2) + 6'(2 - &. (4.3 6) 

Here ~2 = 6kbk and j 2  = j k j k .  The derivation of these equations is quite straightfor- 
ward but a bit tedious. One has to do some formal manipulations with the defining 
formulae 9f the operators involved in (4.3) utilising the basic commutation relations 
of 2, e k ,  6". It should be noted that (4.36) differs from the corresponding c-number 
relation in a very essentia! h2 term. 

The isospin operator W commutes with the operators of all the observables since 
W is a Casimir function with respect to { , }. Therefore a superselection rule is valid 
for the isospin of the test particle. This means that the quantum mechanical state 
space decomposes as an orthogonal direct sum E = ewe9 Zw where 4 = 
(0, i, 1, i, . . .} is the set of possible isospin values in h units. In addition, 

$lw) = h 2 w ( w  + l)IW), E Z w  (4.4) 

for all lw) E E,,,, w E 4 and any observable f: 

of common (generalised) eigenvectors of the observables 
It is convenient to think of Z as being spanned by the orthogonal basis consisting 

* 6,2,9, j 2 ,  j 3 ,  f i 2 , 6 , .  (4.5) 

(4.5) is a complete system of commuting observables but not a ,"",'m,al :ne. i n  one 
respect, the completeness and the minimality of its subsystem { W, 0, 2, S, j 2 ,  J3}  can 
be seen from the usual 'minimal coupling realisation' via differential operators. On 
the other hand, the non-minimality of the system (4.5) follows from the presence of 
the constraint equations (4.3a)-(4.36) too. 

Denote by /w, 4, z, s) a common eigenvector of 6, 2, 9 satisfying 

+lw, 4, z, s) = h 2 w ( w  + l) lw, 4, z, s), 

&, 4, 2, s> = slw, 4, z, s). 

Furthermore, let Ew,q,z,s be the corresponding common eigensubspace of 6, 2, g. 
(We allow 'generalised eigenvectors' that can only be normalised in the distribution 
sense.) Keeping w E 4 fixed, 4 can take the values q = -w, -w + 1,. . . , w since the 
electric charge of the test particle is the projection of its isospin onto a direction in 
its internal spac:, according to (3.2). In order to see the possible values of z let us 
remember that 2 represents the infinitesimal generat9r of the translations in the extra 
spacelike direction of M. Hence theAspectrum of 2 would be R, provided that x 4  
varies from --CO to +W. In this case 2 would only have generalised eigenvectors. As 
far as we are concerned we prefer to consider the extra fifth dimension of the spacetime 
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M as a line compactified to a circle of a ‘very small’ radius A, in the spirit of Kaluza 
and Klein. Keeping in mind this latter possibility z is of the form n, /h  where n, is 
an arbitrary integer. In the usual four-dimensional setting of the test particle’s quantum 
mechanics in external Yang-Mills and Higgs fields (‘after’ the Yang-Mills + 
Yang-Mills-Higgs dimensional reduction) only the z = 0 sector of X appears. From 
a four-dimensional aspect, in our setting too, this sector is distinguished since very 
large mass terms arise in the sectors with n, # 0. 

Now we turn to the derivation of the bound state spectrum. Let us remember that 
a solution of (3 .18)  (and so of (3.10)) is a bounded one exactly when S < 0. That is 
why a bound state is an eigenvector of 4 whichA b5longs to an eigenvalue s less than 
zero. In XW,,,, (common eigensubspace of Q,‘Z) bound states exist if and only if 
q ( z  - q )  < 0. This condition is quite plausible as the effective Coulomb problem 
(3.18) is attractive supposing that Q ( Z  - Q) < 0. The ‘only p,art’ ofthe above statement 
follows from the fact that for q ( z  - q )  2 0 the operator Slzw,q,i is positive definite. 
Let us define the bound state Hilbert space XB c X by 

W +ac 
XB = 0 0 0 0 Xw,q,r,s. 

W E §  q = - w  ni=-c13 s < O  
(4.7) 

In (4.7) q ( z  - q )  < 0 and our task is to determine the possible negative valyes of s. 
In Zs, an eigensubspace of 3 with s < 0, we can introduce the operators &(s) by 
the formula 

f i k  ( s ) = ( -2 s 8 k ,  z3, ( k  = 1,2 ,3)  (4.8a) 

since 8 k ( % s )  c YfS. By means of the orthogo!al direct sum decomposition 2’ = 
0 s<O XS and (4 .8a )  we define the operators &: 

(4.8b) 

p i s  way we arrive at a representation of the dynamical O(4) algebra (3.25) by 6, 
J k l z B ,  self-adjoint operators of XB. Let us introduce the operators 

A A  

kj = ;(.I, - Hj), 
fi - _  

@, 0,2, 3, R2, k3, f i 2 ,  f i 3  

( j  = 1,2,3) ,  

(k = 1,2,3).  k - i ( j k  + & k ) ,  

The system of commuting observables (regarded over XB) 

(4.9) 

(4.10) 

is more convenient to handle than (4 .5) ,  since k,, f i k  give the usual splitting of the 
O(4) algebra into two independent O(3) factors: 

[i,, 211 = ihE,lnknr 

(4.11) 

For fixed w, q, z, s ( q ( z  - q )  < 0, s < 0) Xw,q,z,s must decompose as an orthogonal 
direct sum of finite-dimensional Hilbert spaces carrying irreducible, self-adjoint rep- 
resentations of the O ( 4 )  algebra (4.11) because Xw,q,z,s is an invariant subspace of this 
algebra. The unitary equivalence classes of irreducible, self-adjoint representations of 
t$e algebza (4.11) can be characterised by the eigenvalues of the Casimir operators 
K 2  and N 2  that belong to the two independent O(3) factors. In general the possible 
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eigenvalues of k2 and $’ are of the form h 2 k ( k  + 1 )  and h2n(n + 1 )  with arbitrary 
non-negative half-integers k and n. Now let I w, q, z, s, k, k,, n, n,) E XB be a common 
eigenvector of the system (4.10) with some half-integers k and n. Keeping k and n 
fixed k, and n3 can run ash,  7 -k ,  - k  + 1 , .  . . , k ;  n3 = -n, -n  + 1 , .  . . , n, of course. 
Using the definitions of K,, Nk we get from (4.3a)-(4.3b) the relations 

q 2  - 1 h2q2(z - q ) 2  - 
n ( n  + 1 )  + k ( k  + 1) = - - 2 4s ’ 

hq2(z - 4 )  
( -2s )”2  ’ 

n ( n  + 1 )  - k ( k  + 1 )  = 

( 4 . 1 2 ~ )  

(4.12 b)  

The elimination of ( z  - q)/(-2s)”’ from (4.12) results in the following second-order 
equation between k ( k  + 1 )  and n ( n  + 1 ) :  

2 q 2 [ k ( k  + 1 )  + n ( n  + l ) ]  = q 2 ( q 2  - 1 )  + [ k ( k  + 1 )  - n ( n  + 1 ) 1 2 .  ( 4 . 1 3 ~ )  

The subsidiary condition 

sgn[(n - k ) l  = sgn[(z - 411 (4.13 b )  

also holds because of (4.12b). With the notations n, = min(n, k ) ,  n, = max(n, k )  
the solution of ( 4 . 1 3 ~ )  is 

(4.14a) n>  - n, = 141, (n,  = o,;, I , ; , .  ..) 

and according to (4.13b) 

k = n,, 

k = n,, 

n = n, 

n = n, 

if ( z  - q )  > 0, 

if (z - q )  < 0. 
(4.14b) 

By analogy with the non-relativistic Coulomb problem we introduce a ‘principal 
quantum number’ X with the formula X = ( 2 n ,  + 1 ) .  From (4.121 and (4.14) we 
obtain the main result of this part, namely the discrete spectrum of S: 

(4.15) 

For fixed w, q, z (4.14) and (4.15) provide us with one-to-one correspondences 
between any two of the following three objects: the eigenvalue s, the principal quantum 
number X or the Casimir numbers k and n of the actual representation of the O(4) 
algebra in %‘w,q,z,a. The representation of O(4) in %‘w,q,z,s-characterised by a pair 
( k ,  n)-must occur with onefold multiplicity on account of the completeness of the 
system of commuting observables (4.10). In other words, %‘w,q,z,s is an irreducible 
repre!e;ta$o? space of the O(4) algebra. From the above it is clear that 
{ W, Q, Z, S, K, ,  N3} is a (minimal) complete system of observables. 

Keeping ( w ,  q, z, s) fixed the pair ( k 3 ,  n3) can have ( 2 k  + 1)(2n + 1)  different values 
where the pair ( k ,  n )  describes the actual representation. It is fairly trivial to show 
that (2k + 1)(2n + l ) ,  the dimension of Xw,q,z,s, is equal to 

W X  + 21ql). (4.16) 

The expression (4.15) remains unchanged under the transformation q + ( - q ) ,  z + 

(-z). This invariance results in an additional twofold degeneracy for a pair of 
eigenvalues ( w ,  s), beyond X ( X  + 2/91,. 
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For any W E $  let I;, denote the spectrum of &W. From (4.15) it is obvious that 
X,,, c X(,,,+”) where U is an arbitrary natural number. Let us remember that X,,, is the 
state space for a particle of isospin w. So we can express the previous relation by 
saying: the effective binding energy spectrum of an isoboson (resp. isofermion) is 
contained in that of any other isoboson (resp. isofermion) with a greater isospin. In 
the quantum mechanical framework the particles of different total isospin cannot 
transform into each other. 

It is worth mentioning that in the case of fixed ( w ,  q, z, s) the eigenvalue of 
j2-h2j(j+l)-can vary according t o j = \ q I ,  ( Iql+l) ,  . . . , (  X+Iq( - l ) .  This can be 
seen from a transformation between the two orthogonal bases of TB c,orr:sp,o;din4 to  
th! fo!lo,wi?g :WO complete systems of commuting observables: { W, Q, 2, S, K,, N,},  
{W, Q, z, s, J 2 ,  jd. 

5. Conclusions 

Finally we would like to draw the reader’s attention to some further questions connected 
with the subject of this paper. We presented the bound state spectrum for an isospin- 
carrying test particle in the background field of the ‘ro=cc monopole’. In this case 
the scattering phenomena are also highly likely to be calculable on a purely group 
theoretic basis. The solution presented here could be used as a starting point to 
perturbative calculations (taking 1/ ro as a ‘small’ parameter) for the test particle’s 
problem in the background field (1.1) with ro # m. In such a perturbative investigation 
one could well use the non-invariance group of the ro = 

The appearance of the effective Coulomb problem (3.18) suggests that %‘w,s,z carries 
an irreducible unitary representation of the group 0(4 ,2) .  It would be interesting to 
see whether ZB could be regarded as an irreducible representation space of some 
group (to be found). 

problem. 
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